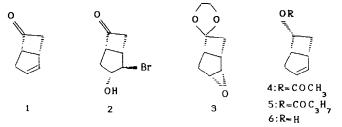
ENANTIOSELECTIVE PREPARATION OF NOVEL BICYCLO[3.2.0] HEPTANE DERIVATIVES USING ESTER HYDROLYSIS CATALYZED BY NOVO LIPOLASE $^{\mathsf{TM}}$


Omar Parve, Anne Pals, Vello Kadarpik, Lilja Lahe, Ülo Lille Institute of Chemistry, Estonian Academy of Sciences, Akadeemia tee 15, EE0108 Tallinn, Estonia

Peeter Sikk, Aivar Lookene f, Toomas Välimäe Institute of Chemical Physics and Biophysics, Estonian Academy of Sciences, Rävala pst. 10, EE0001 Tallinn, Estonia f Present address: Umeå University, Sweden

(Received in USA 23 November 1992)

Abstract: Double enantioselection occurs in the case of hydrolysis of (1S,2R,3R,5S,6R)-2-bromo-3-butanoyloxy-6-hexanoyloxybicyclo[3.2.0]heptane (13), allowing us to obtain the corresponding bromodiol (-)-(14) and epoxyalcohol (-)-(15) of high optical purity.

Bicyclo[3.2.0]heptane derivatives (1)-(3) have been shown to be central building blocks for the synthesis of prostanoids¹.

In order to provide optically pure material, a chemo-enzymatic approach to resolution of the enantiomers of bicyclo[3.2.0]hept-2-en-6-one (1) using lipases has been developed². This method allows us, upon stereoselective reduction of racemic heptenone (1), acylation, subsequent lipase-catalyzed asymmetric hydrolysis of esters (4),(5) and oxidation of the resulting alcohol (-)-(6), to obtain (1R,5S)-heptenone (1) in good yield^{3.4}. The exact responsibility of porcine pancreatic lipase (PPL) as catalyst has been established in quantitative terms: butyrate (5) was found to be an exceptionally good substrate for PPL which, unfortunately, tends to become inactivated during hydrolysis⁵. Furthermore, esters (7) and (8) could not be hydrolyzed by using PPL. Similar results were obtained earlier in case of related 7-substituted derivatives⁶.

In our search for a more suitable enzyme we chose an industrial lipase from Humicola lanuginosa commercialized for use in household detergents as LipolaseTM and characterized as a thermally and chemically highly stable enzyme^{7.8}. The first trial in case of bicyclic esters gave encouraging

360 O. PARVE *et al*.

result: hydrolysis $^{\circ}$ of butyrate (5) proceeded with high enantioselectivity (e.e. of resulting (-)-(6) exceeded 96%) 11 and satisfactory rate 12 . The initial attempts to hydrolyze butyrate (8) using Lipolase failed, and we strove to find a solution analogous to that of bicycloheptenone (1). Esters (7) and (8) 13 were reduced 14 smoothly using sodium borohydride in methanol, affording endo- and exo-alcohols (9)/(10), (11)/(12) 13 , resp., in high yield (>95%) and ratio (97.5/2.5) in both cases 14 .

Hydrolysis° of the racemic diester $(13)^{13}$ obtained by acylation of hydroxy butyrate (11) gave the desired hydroxy ester (-)-(11) (e.e., 94%)¹¹ and two unexpected products¹⁰: bromodiol $(-)-(14)^{13}$ (e.e., 99%)¹¹ and epoxyalcohol $(-)-(15)^{13}$ (e.e., 95%)¹¹ in a molar ratio of 3:1. No other probable products (hydroxy and/or epoxy capronate) were detected showing the cleavage of the hexanoyloxy group to occur as the first step of hydrolysis. Hydrolysis' of racemic hydroxy butyrate (11) afforded products (-)-(14) (e.e., 91%) and (-)-(15) (e.e., 92%) (ratio:3/1) of satisfactory optical purity¹¹, giving evidence of the occurrence of double enantioselection in case of total hydrolysis of diester (13).

The desired differentiation between the ester groups was realized in case of acetoxy butyrate $(16)^{13}$: only the cyclobutanolic ester moiety was cleaved by Lipolase, while the acetoxy group remained untouched. The resulting hydroxy acetate (-)-(9) (e.e. $\geq 94\%$) was reoxidized to cyclobutanone (7), a precursor of epoxide (3), using pyridinium dichromate in DMFA 16 . Having taken into account the results described above we reexamined the hydrolysis of bromohydrin butyrate (8): we suggested the formation of a suspension of the latter in water medium. Indeed, adding a low amount (0.5 ml) of Et₂O in order to get an emulsion enabled enantioselective hydrolysis of (8) (e.e. of resulting $(+)-(2) \approx 75\%$) that at a low rate.

The epoxide formation was also observed. Using a longer hydrocarbon chain of the esterifying acid (Co instead of Co) enabled us to perform the hydrolysis without cosolvent, but both the reaction rate and enantioselectivity were low^{17} (e.e. of resulting $(+)-(2) \sim 42\%$)¹¹.

In conclusion, it was shown that

- 1) double enantioselection occurs in case of total hydrolysis of diester (13), allowing us to obtain bromodiol (-)-(14) and epoxyalcohol (-)-(15) of high optical purity;
- 2) the 3-endo-acetoxy group of hydroxy ester (9) is not cleaved by Lipoladifferentiation between cyclobutanolic and cyclopenenabling tanolic ester moieties of diester (16) to provide an easy access to enantiomerically pure conventional prostanoid synthons;
- 3) bromohydrin (+)-(2) can be obtained in moderate optical purity upon hydrolysis of its butyric ester using Et 0 as cosolvent.

Aknowledgement: The authors wish to thank the Estonian Innovation Foundation for financial support (Grant No. 17it92) and Novo A/S for donating a sample of Lipolase. We are also grateful to Drs. T.Pehk, M.Lopp and T.Kanger for fruitful discussions, and Miss Ingrid Kühn for the preparation of the manuscript.

References and Notes

- Newton, R.F.; Roberts, S.M. Tetrahedron 1980, 36, 2163-2196.
 Cotterill, I.C.; Macfarlane, E.L.A.; Roberts, S.M. J.Chem.Soc., Perkin Trans. I, 1988, 3387-3389.
- 3. Klempier, N.; Faber, K.; Griengl, H. Biotech. Lett. 1989, 685-688.
- Klempier, N.; Geymayer, P.; Stadler, P.; Tetrahedron: Asymmetry 1990, 1, 111-118. Griengl, H. Faber, K.;
- 5. Preceding communication.
- 6. Spreitz, J.; Grobbauer, R.; Griengl, H.; Faber, K. in: "Lipases: Structure, Mechanism and Genetic Engineering", GBF Monographs, Alberghina, L.; Schmid, R.D.; Verger, R. Eds., 1990, Vol. 16, 373-5.
 7. Boel, E.; Huge-Jensen, B.; Wöldike, H.F.; Gormsen, E.; Christensen, M.; Andreasen, F.; Thim, L. in: ibidem, 207-219.
 8. Lipolase 100L (Novo Industri A/S, Denmark) was used (declared activity: 100 KLU/G: batch No. LAN 2002, 20-6)
- ty: 100 KLU/G; batch No. LAN 0002 90-6).
- General procedure: hydrolysis was carried out on a pH-stat ("Radio-meter", Denmark) under vigorous stirring in water (pH=7.0) containing NaCl (0.15 M), CaCl₂ (2.10³ M), the reaction volume was 15 ml, acid was titrated using NaOH (0.175 M), the substrate amount varied between 0.5 and 5.0 mmoles, 0.6 ml of the Lipolase was used; the product was taken up into EtOAc (100 ml), washed with sat. NaHCO3 (30 ml), water (20 ml) and brine (2x20 ml); the products were separated by short-column chromatography, total yield: 70-90%.
- 10. The absolute configuration of the products (as given in Schemes) was determined by converting them to compounds of known configuration 10 %, (+)-(2) or (-)-(6), or starting synthesis from them.
- 10a.Newton, R.F.; Paton, J.; Reynolds, D.P.; Young, S.; Roberts, S.M. J.C.S. Chem. Comm. 1979, 908-909.
- 11. Enantiomeric purity was estimated:
 1) for (-)-(6), (+)-(2), (-)-(14) by HPLC of (R)-MTPA esters (eluent: n-hexane/EtOAc 100/2 for the former and n-hexane/isopropanol 100/3 for the others, resp.) 11a,b;

362 O. PARVE et al.

- 2) for (-)-(9) and $(-)-(11)^{11}$ by 13 C NMR spectroscopy of (R)-MTPA esters^{11a}, for both of them only one diastereomer was detected showing the content of optical antipode to be not higher than 3%, being considered to be the sensitivity level under the conditions used; 3) for (-)-(15) by correlation of an optical rotation value with that measured for the sample prepared from optically pure (>99%) (-)-(14). 11a.(R)-MTPA esters of racemic samples were investigated as references.
- 11b.A Separon SGX column (3x300 mm) was used.
- 11c. 13 C NMR chem. shifts ($\delta \tau MS$) for atoms of bicyclic skeleton ($^{\circ}C_{_{1}-7}$) of (R)-MTPA esters of (-)-(11) (substrate)/(+)-(11) (inactive), respectively, are as follows: 44.43/44.75, 56.15/56.13, 84.29/84.16, 29.29/29.16, 42.49/42.47, 66.76/66.70, 33.01/32.52.
- 12. Results of kinetic experiments will be published elsewhere.
- 13. Characterization of compounds.
 - 13 C NMR spectra (chem. shifts δ_{TMS} given in ppm) were scanned on a Bruker 500 spectrometer at 500.1 MHz, in CDCl3, and IR spectra on a "Specord 75 IR" spectrometer. TLC was performed using DC-Alufolien Kieselgel 60 F254 plates (Merck). The optical rotation was measured on a polarimeter "Polamat A". (7): IR - 1790, 1740, 1375, 1235, 1025, 690; TLC - $R_f = 0.32$ (C_6H_6 /acetone 100/3); (8): IR - 1795, 1737, 1390, 1260, 1165, 1090, 980, 690; TLC - $R_f = 0.26$ (C_6H_6); (9): IR - 3430, 2935, 1730, 1370, 1225, 1010, 690, 680; TLC - $R_f = 0.22$ (C_6H_6 /acetone 10/1); mp = +17°C; $\begin{bmatrix} \alpha \end{bmatrix}_{578}^{20} \ -109^{\circ} \ (\text{c 0.7, C}_6\text{H}_6); \ \underline{(11)} \colon \ ^{13}\text{C NMR} \ (\text{C}_{1-7}; \ \text{C}_{(3)1-4}) \ - \ 45.9, \\ 56.5, \ 84.4, \ 28.4, \ 41.7, \ 63.1, \ 37.4; \ 171.8, \ 36.4, \ 18.4, \ 13.6; \ \text{IR} - 3450, \ 2965, \ 1735, \ 1170, \ 1000, \ 695; \ \text{TLC} \ - \ \text{R}_f = 0.40 \ (\text{C}_6\text{H}_6/\text{acetone})$ 10/1); [α] ²⁰ -86° (c 1.0, C₆H₆); (12): 13 C NMR (C₁₋₇; C₍₃₎₁₋₄) -42.7, 56.2, 84.2, 34.7, 49.2, 71.8, 35.8; 172.3, 36.4, 18.3, 13.7; IR - 3400, 2970, 2880, 1740, 1430, 1170, 1080, 1060, 750, 700; TLC -1180, 1100, 1000, 680; TLC - $R_f = 0.76$ (CoHo/acetone 10/1); (14): ¹³C NMR (C₁₋₇) - 45.5, 60.3, 82.4, 31.4, 42.8, 63.9, 37.3; IR - 3230, 2945, 1150, 1025, 790, 700; TLC - $R_f = 0.18$ ($C_6 H_6$ /acetone 10/1); $\left[\alpha\right]_{578}^{20}$ -49.8° (c 0.1, C₆H₆); mp = 68±1°C; (15): ¹³C NMR (C₁₋₇) - 36.3, 66.8, 62.2, 27.9, 44.0, 65.3, 32.3; IR - 3455, 840; TLC - $[\alpha]_{578}^{20}$ -24.2° (c 0.5, C₆H₆); (16): $R_f = 0.37 (C_6 H_6 / acetone 10/1);$
 - ¹³C NMR $(C_{1-7}; C_{(3)1-2}; C_{(6)1-4})$ 44.2, 56.3, 84.9, 29.4, 42.8, 64.6, 33.0; 169.9, 21.1; 172.6, 36.1, 18.8, 13.7; IR 3450, 2970, 1740, 1380, 1230, 1180, 1020, 680; TLC R_f =0.14 (C_6H_6) .
- 14. Ketone was dissolved in CH_3OH (1 mmole/3 ml), cooled to $0^{\circ}C$, NaBH₄ (1.5 eq.) was added, the stirring was continued for 5-10 min.; EtoAc (9 ml per mmole of substrate) was added followed by sat. NH₄Cl, the organic layer was further washed with water and brine, dried on Na2 SO4; (9) was crystalized from n-hexane/EtOAc on cooling, (11) was purified using short-column chromatography.
- 15. Lipases typically attack the liquid esters emulsified in water.
- 16. Corey, E.J.; Schmidt, G. Tetrahedron Lett. 1979, 399-402.
- 17. Hydrolysis of butyric and capronic esters of bromohydrin (2) (1 mmole) using Lipolase (1.0 ml) was performed in 0.1 M MES buffer (pH 7.0) containing also NaCl and CaCl₂ (ref. 10), the reaction time was 96 hrs., conversion was 15-20%.